

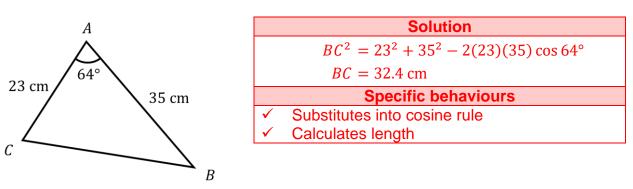
PERTH MODERN SCHOOL

Exceptional schooling. Exceptional students. Independent Public School

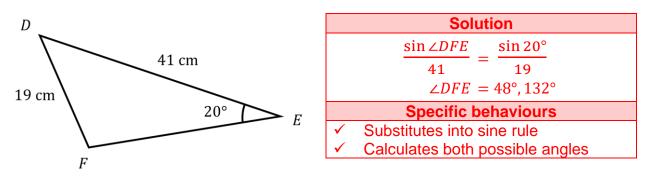
Course:	Methods	Year: _	11
Student Name:	Marking Key	Teacher Name:	
Date: 09/09/22			
Task Type:	Response		
Time Allowed:	40 minutes		
Number of Question	s: <u>8</u>		
Materials Required:	CAS calculator (ClassPad) (to be provided by the stude	-	pages of notes
Standard Items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler and highlighters		
Special Items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper (both sides) and up to three calculators approved for use in the WACE examinations		
Marks Available:	<u>40</u> marks		
Task Weighting:	<u> 10 </u> %		

Formula Sheet Provided: Yes

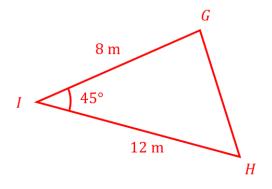
Do not penalise for missing/incorrect units. Do not penalise for rounding to the incorrect number of decimal places.


Note: All questions worth more than 2 marks require working to obtain full marks.

Question 1 [6 marks – 2, 2, 2]

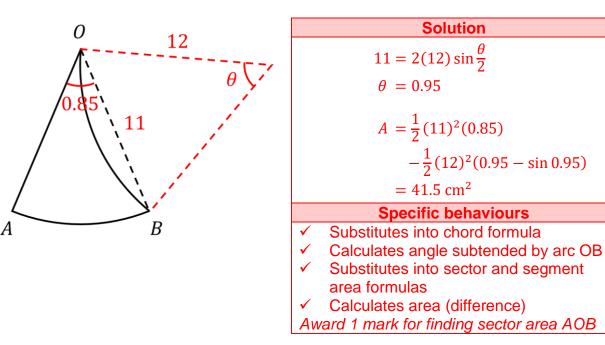

(1.2.4)

Perth Modern

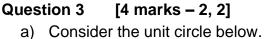

a) Determine *BC*, to 1 decimal place.

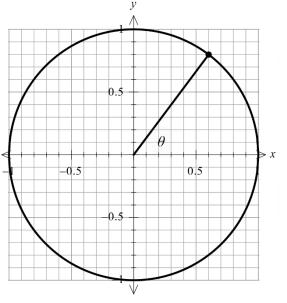
b) Determine $\angle DFE$, to the nearest degree.

c) Find the exact area of $\triangle GHI$, given that GI = 8 m, HI = 12 m and $\angle GIH = 45^{\circ}$.



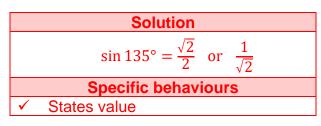
	Solution
	Area = $\frac{1}{2}(8)(12) \sin 45^{\circ}$
	$=24\sqrt{2}$ m ²
	Specific behaviours
✓	Substitutes into area formula
\checkmark	Calculates exact area


(1.2.5 - 1.2.6)


Question 2 [4 marks]

For the shape below, arc *AB* has radius 11 cm, arc *OB* has radius 12 cm and $\angle AOB = 0.85$. Find the area of the shape to 1 decimal place.

(1.2.7-1.2.8)

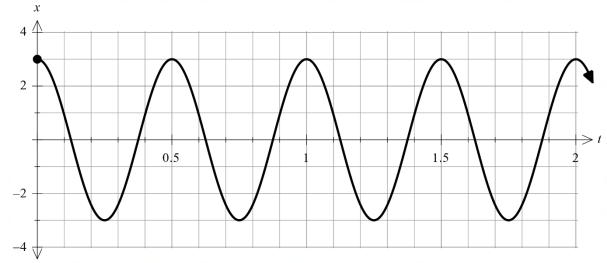

i) Find $\cos(180^\circ + \theta)$ to 1 decimal place.

Solution
$$cos(180^\circ + \theta) = -cos \theta$$
 $= -0.6$ Specific behaviours \checkmark States value

ii) Find $\sin(-\theta)$ to 1 decimal place.

Solution
$$sin(-θ) = -sin θ$$
 $= -0.8$ Specific behaviours✓ States value

b) Determine the exact values of the following:i) sin 135°ii) tan 300°



Solution $\tan 300^\circ = -\sqrt{3}$ Specific behaviours✓States value

Question 4 [3 marks – 1, 2]

(1.2.9-1.2.12, 1.2.15)

A pendulum oscillates such that its horizontal position x cm with respect to time t seconds is as shown in the graph below.

a) State the amplitude and period of the pendulum.

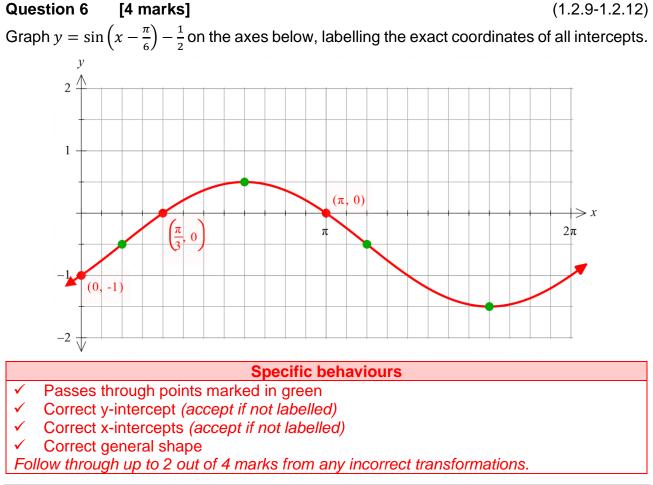
Solution		
	Amplitude = 3 cm	Period = 0.5 seconds
Specific behaviours		
\checkmark	States amplitude and period	

b) Given that $x(t) = a \cos(bt)$, state the equation of the pendulum's motion.

	Solution
x(t) =	$= 3\cos(4\pi t)$ or $3\cos(720t)$
Specific behaviours	
\checkmark Determines value of a	
\checkmark Determines value of b	
Accept if equation is not stated	

Question 5 [7 marks – 3, 4]

(1.2.16, 1.2.14)


a) Given that $\sin a = b$, where *a* is a positive acute angle, determine the exact solutions of $\sin 2\theta = -b$ where $0 \le \theta \le 2\pi$.

$2\theta = \pi + a, \ 2\pi - a, \ 3\pi + a, \ 4\pi - a$ $\theta = \frac{\pi + a}{2}, \ \frac{2\pi - a}{2}, \ \frac{3\pi + a}{2}, \ \frac{4\pi - a}{2}$ $\underbrace{\text{Specific behaviours}}$ $\checkmark \text{ States first two solutions of } 2\theta$ $\checkmark \text{ States second two solutions of } 2\theta$	Solution		
Specific behaviours ✓ States first two solutions of 2θ	$2\theta = \pi + a, \ 2\pi - a, \ 3\pi + a, \ 4\pi - a$		
\checkmark States first two solutions of 2 θ	$\theta = \frac{\pi + a}{2}, \ \frac{2\pi - a}{2}, \ \frac{3\pi + a}{2}, \ \frac{4\pi - a}{2}$		
	Specific behaviours		
\checkmark States second two solutions of 2 θ			
	\checkmark States second two solutions of 2 θ		
\checkmark Divides by 2 to determine solutions of θ			

Question 5 (continued)

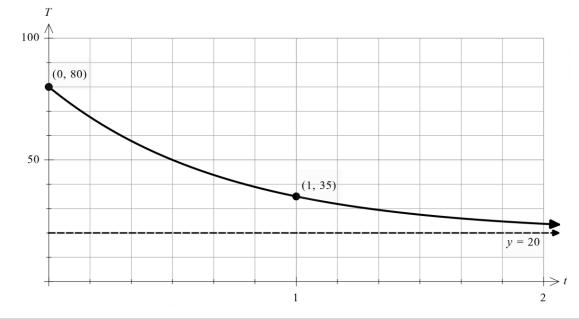
b) If $\cos A = -\frac{12}{13}$ where $180^{\circ} < A < 270^{\circ}$ and $\sin B = \frac{15}{17}$ where *B* is obtuse, determine the exact value of $\cos(A - B)$.

Solution		
	$\sin A = -\frac{5}{13}$	
$\cos B = -\frac{8}{17}$		
$\cos(A - B) = \cos A \cos B + \sin A \sin B$		
	$= \left(-\frac{12}{13}\right)\left(-\frac{8}{17}\right) + \left(-\frac{5}{13}\right)\left(\frac{15}{17}\right)$	
	$=\frac{21}{221}$	
	Specific behaviours	
\checkmark	Determines exact value of sin A or the correct magnitudes of sin A and cos B	
\checkmark	Determines exact value of cos B or the correct signs of sin A and cos B	
 Image: A set of the set of the	Substitutes into identity	
\checkmark	Calculates exact value of $cos(A - B)$	

Question 7 [6 marks – 3, 3]

a) Simplify $(64a^6b^{15})^{\frac{1}{3}} \div (a^5bc^2)$, expressing your answer with positive indices.

Solution	
$(64a^6b^{15})^{\frac{1}{3}} \div (a^5bc^2) = 4a^2b^5 \div (a^5bc^2)$	
$=4a^{-3}b^4c^{-2}$	
	$=\frac{4b^4}{a^3c^2}$
	$=\frac{1}{a^3c^2}$
	Specific behaviours
✓	Expands brackets
\checkmark	Divides to combine variables
\checkmark	Expresses with positive indices


b) Solve $16^x = 128$ for the exact value of *x*, showing all working.

Solution	
$(2^4)^x = 2^7$	
$2^{4x} = 2^7$	
4x = 7	
$\gamma = \frac{7}{2}$	
$x = \overline{4}$	
Specific behavio	urs
✓ Expresses using a base of 2	
✓ Equates indices	
\checkmark Solves for exact value of x	

Question 8 [6 marks – 4, 2]

(2.1.1-2.1.2, 2.1.7)

A cup of green tea is poured at 80°C and cools down towards room temperature at an exponential rate, as shown below.

a) The temperature $T^{\circ}C$ after *t* hours can be modelled using the equation $T = ab^t + k$. Using the information shown, determine the equation.

Solution		
From asymptote $y = k$:		
k = 20		
$T = ab^t + 20$		
From y-intercept (0,80):		
$80 = ab^0 + 20$		
a = 60		
$T = 60b^t + 20$		
From (1, 35):		
$35 = 60b^1 + 20$		
b = 0.25		
$T = 60(0.25)^t + 20$		
Specific behaviours		
\checkmark Determines value of k		
\checkmark Determines value of a		
✓ Substitutes (1,35)		
\checkmark Determines value of b		
Accept if equation is not stated		

b) The safe drinking temperature is estimated to be about 57°C. How long does the tea need to cool for to be safe to drink, to the nearest minute?

Solution	
Substituting in $T = 57$:	
$57 = 60(0.25)^t + 20$	
t = 0.349 hours	
t = 21 minutes	
Specific behaviours	
 ✓ Substitutes into equation 	
✓ Determines time to the nearest minute	
If estimated from graph, award 1 mark for 20 minutes or 2 marks for 21 minutes	

SUPPLEMENTARY PAGE

Question: _____

Question: _____